1. For the set $A:=\left\{x \in \mathbb{Q} \backslash\{0\}: x<1+\frac{1}{x}\right\}$, let $\phi:=\sup A$. Determine $\# \operatorname{dbp}(\phi)$ and the first 4 digits of ϕ using the method given in the proof of the order-completeness of \mathbb{R}.
Remark: This number ϕ is known as the golden ratio.
2. Let $A, B \subseteq \mathbb{R}$ be nonempty sets bounded above. Prove that $\sup (A \cup B)=\sup \{\sup A, \sup B\}$.
3. For each set S below, find $\inf S$ and $\sup S$ (within \mathbb{R}). Prove your answers.
(a) $S=\left\{\frac{1}{\sqrt{n}}: n \in \mathbb{N}^{+}\right\} ;$
(b) $S=\left\{\frac{1}{n}-\frac{1}{m}: n, m \in \mathbb{N}^{+}\right\}$.
4. Which of the following functions $d: X \times X \rightarrow[0, \infty)$ is a metric on X ? Prove your answers.
(a) $X:=\mathbb{R}$ and $d(x, y):= \begin{cases}|x-y| & \text { if }|x-y| \leq 1 \\ 1 & \text { otherwise }\end{cases}$
(b) $X:=\mathbb{R}$ and $d(x, y):=(x-y)^{2}$
(c) $X:=(0,1)$ and $d(x, y):=|x-y|+\left|\frac{1}{x}-\frac{1}{y}\right|$
(d) $X:=\mathbb{R}^{n}$ and $d(x, y):=\max _{i<n}\left|x_{i}-y_{i}\right|$, where $x:=\left(x_{0}, \ldots, x_{n-1}\right), y:=\left(y_{0}, \ldots, y_{n-1}\right)$.
5. For fixed $n \in \mathbb{N}^{+}$and a set $A \neq \emptyset$, let $X=A^{n}$ and think of the elements of X as words of length n in the alphabet A. Define $d_{H}: X \times X \rightarrow[0, \infty)$ by setting $d_{H}(x, y)$ to be the total number of indices $i<n$ at which x and y differ, i.e.

$$
d(x, y):=\left|\left\{i \in\{0, \ldots, n-1\}: x_{i} \neq y_{i}\right\}\right| .
$$

Prove that this is a metric on X.
Remark: d_{H} is called Hamming metric.
6. Let (X, d) be a metric space and prove that for any $x, y \in X$, the following are equivalent:
(1) (Algebraic statement, no room to wiggle) $x=y$
(2) (Analytic statement, ε of wiggle room) For each $\varepsilon>0, d(x, y) \leq \varepsilon$.

