Math 347H: Fundamental Math (H) Номеwork 10 Due date: Dec 7 (Thu)

- **1.** For the set $A := \{x \in \mathbb{Q} \setminus \{0\} : x < 1 + \frac{1}{x}\}$, let $\phi := \sup A$. Determine $\#dbp(\phi)$ and the first 4 digits of ϕ using the method given in the proof of the order-completeness of \mathbb{R} . REMARK: This number ϕ is known as the *golden ratio*.
- **2.** Let $A, B \subseteq \mathbb{R}$ be nonempty sets bounded above. Prove that $\sup(A \cup B) = \sup \{\sup A, \sup B\}$.
- **3.** For each set *S* below, find $\inf S$ and $\sup S$ (within \mathbb{R}). Prove your answers.
 - (a) $S = \left\{ \frac{1}{\sqrt{n}} : n \in \mathbb{N}^+ \right\};$ (b) $S = \left\{ \frac{1}{n} - \frac{1}{m} : n, m \in \mathbb{N}^+ \right\}.$
- 4. Which of the following functions $d : X \times X \rightarrow [0, \infty)$ is a metric on X? Prove your answers.
 - (a) $X := \mathbb{R}$ and $d(x, y) := \begin{cases} |x y| & \text{if } |x y| \le 1\\ 1 & \text{otherwise} \end{cases}$
 - (b) $X := \mathbb{R}$ and $d(x, y) := (x y)^2$
 - (c) X := (0, 1) and $d(x, y) := |x y| + |\frac{1}{x} \frac{1}{y}|$
 - (d) $X := \mathbb{R}^n$ and $d(x, y) := \max_{i < n} |x_i y_i|$, where $x := (x_0, \dots, x_{n-1})$, $y := (y_0, \dots, y_{n-1})$.
- 5. For fixed $n \in \mathbb{N}^+$ and a set $A \neq \emptyset$, let $X = A^n$ and think of the elements of X as words of length *n* in the alphabet A. Define $d_H : X \times X \rightarrow [0, \infty)$ by setting $d_H(x, y)$ to be the total number of indices i < n at which x and y differ, i.e.

$$d(x, y) := |\{i \in \{0, \dots, n-1\} : x_i \neq y_i\}|.$$

Prove that this is a metric on *X*.

Remark: d_H is called *Hamming metric*.

- **6.** Let (X, d) be a metric space and prove that for any $x, y \in X$, the following are equivalent:
 - (1) (Algebraic statement, no room to wiggle) x = y
 - (2) (Analytic statement, ε of wiggle room) For each $\varepsilon > 0$, $d(x, y) \le \varepsilon$.